


UNIT CONVERSION FACTORS

Length
1 m = 100 cm = 1000 mm = 106 mm = 109 nm
1 km = 1000 m = 0.6214 mi
1 m = 3.281 ft = 39.37 in.
1 cm = 0.3937 in.
1 in. = 2.540 cm
1 ft = 30.48 cm
1 yd = 91.44 cm
1 mi = 5280 ft = 1.609 km
1 Å = 10-10 m = 10-8 cm = 10-1 nm
1 nautical mile = 6080 ft
1 light@year = 9.461 * 1015 m

Area
1 cm2 = 0.155 in.2

1 m2 = 104 cm2 = 10.76 ft2

1 in.2 = 6.452 cm2

1 ft2 = 144 in.2 = 0.0929 m2

Volume
1 liter = 1000 cm3 = 10-3 m3 = 0.03531 ft3 = 61.02 in.3

1 ft3 = 0.02832 m3 = 28.32 liters = 7.477 gallons
1 gallon = 3.788 liters

Time
1 min = 60 s
1 h = 3600 s
1 d = 86,400 s
1 y = 365.24 d = 3.156 * 107 s

Angle
1 rad = 57.30° = 180°>p
1° = 0.01745 rad = p>180 rad
1 revolution = 360° = 2p rad
1 rev>min 1rpm2 = 0.1047 rad>s

Speed
1 m>s = 3.281 ft>s
1 ft>s = 0.3048 m>s
1 mi>min = 60 mi>h = 88 ft>s
1 km>h = 0.2778 m>s = 0.6214 mi>h
1 mi>h = 1.466 ft>s = 0.4470 m>s = 1.609 km>h
1 furlong>fortnight = 1.662 * 10-4 m>s

Acceleration
1 m>s2 = 100 cm>s2 = 3.281 ft>s2

1 cm>s2 = 0.01 m>s2 = 0.03281 ft>s2

1 ft>s2 = 0.3048 m>s2 = 30.48 cm>s2

1 mi>h # s = 1.467 ft>s2

Mass
1 kg = 103 g = 0.0685 slug
1 g = 6.85 * 10-5 slug
1 slug = 14.59 kg
1 u = 1.661 * 10-27 kg
1 kg has a weight of 2.205 lb when g = 9.80 m>s2

Force
1 N = 105 dyn = 0.2248 lb
1 lb = 4.448 N = 4.448 * 105 dyn

Pressure
1 Pa = 1 N>m2 = 1.450 * 10-4 lb>in.2 = 0.0209 lb>ft2
1 bar = 105 Pa
1 lb>in.2 = 6895 Pa
1 lb>ft2 = 47.88 Pa
1 atm = 1.013 * 105 Pa = 1.013 bar

= 14.7 lb>in.2 = 2117 lb>ft2
1 mm Hg = 1 torr = 133.3 Pa

Energy
1 J = 107 ergs = 0.239 cal
1 cal = 4.186 J 1based on 15° calorie2
1 ft # lb = 1.356 J
1 Btu = 1055 J = 252 cal = 778 ft # lb
1 eV = 1.602 * 10-19 J
1 kWh = 3.600 * 106 J

Mass–Energy Equivalence
1 kg 4 8.988 * 1016 J
1 u 4 931.5 MeV
1 eV 4 1.074 * 10-9 u

Power
1 W = 1 J>s
1 hp = 746 W = 550 ft # lb>s
1 Btu>h = 0.293 W
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TO THE STUDENT

HOW TO SUCCEED IN PHYSICS  
BY REALLY TRYING
Mark Hollabaugh, Normandale Community College, Emeritus

Physics encompasses the large and the small, the old and the new. From the atom to galaxies, 
from electrical circuitry to aerodynamics, physics is very much a part of the world around 
us. You probably are taking this introductory course in calculus-based physics because it is 
required for subsequent courses that you plan to take in preparation for a career in science or 
engineering. Your professor wants you to learn physics and to enjoy the experience. He or she 
is very interested in helping you learn this fascinating subject. That is part of the reason your 
professor chose this textbook for your course. That is also the reason Drs. Young and Freedman 
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas that will assist 
your learning. Specific suggestions on how to use the textbook will follow a brief discussion of 
general study habits and strategies.

PREPARATION FOR THIS COURSE
If you had high school physics, you will probably learn concepts faster than those who have not 
because you will be familiar with the language of physics. If English is a second language for 
you, keep a glossary of new terms that you encounter and make sure you understand how they 
are used in physics. Likewise, if you are further along in your mathematics courses, you will 
pick up the mathematical aspects of physics faster. Even if your mathematics is adequate, you 
may find a book such as Edward Adelson’s Get Ready for Physics to be a great help for sharp-
ening your math skills as well as your study skills.

LEARNING TO LEARN
Each of us has a different learning style and a preferred means of learning. Understanding your 
own learning style will help you to focus on aspects of physics that may give you difficulty and 
to use those components of your course that will help you overcome the difficulty. Obviously 
you will want to spend more time on those aspects that give you the most trouble. If you learn 
by hearing, lectures will be very important. If you learn by explaining, then working with other 
students will be useful to you. If solving problems is difficult for you, spend more time learning 
how to solve problems. Also, it is important to understand and develop good study habits. Per-
haps the most important thing you can do for yourself is set aside adequate, regularly scheduled 
study time in a distraction-free environment.

Answer the following questions for yourself:
•	 Am I able to use fundamental mathematical concepts from algebra, geometry, and trig-

onometry? (If not, plan a program of review with help from your professor.)
•	 In similar courses, what activity has given me the most trouble? (Spend more time on 

this.) What has been the easiest for me? (Do this first; it will build your confidence.)
•	 Do I understand the material better if I read the book before or after the lecture? (You 

may learn best by skimming the material, going to lecture, and then undertaking an in-
depth reading.)

•	 Do I spend adequate time studying physics? (A rule of thumb for a class like this is to de-
vote, on average, 2.5 hours out of class for each hour in class. For a course that meets 5 hours 
each week, that means you should spend about 10 to 15 hours per week studying physics.)

•	 Do I study physics every day? (Spread that 10 to 15 hours out over an entire week!) At 
what time of the day am I at my best for studying physics? (Pick a specific time of the 
day and stick to it.)

•	 Do I work in a quiet place where I can maintain my focus? (Distractions will break 
your routine and cause you to miss important points.)
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WORKING WITH OTHERS
Scientists or engineers seldom work in isolation from one another but rather work coopera-
tively. You will learn more physics and have more fun doing it if you work with other students. 
Some professors may formalize the use of cooperative learning or facilitate the formation of 
study groups. You may wish to form your own informal study group with members of your 
class. Use e-mail to keep in touch with one another. Your study group is an excellent resource 
when you review for exams.

LECTURES AND TAKING NOTES
An important component of any college course is the lecture. In physics this is especially 
important, because your professor will frequently do demonstrations of physical principles, 
run computer simulations, or show video clips. All of these are learning activities that will help 
you understand the basic principles of physics. Don’t miss lectures. If for some reason you do, 
ask a friend or member of your study group to provide you with notes and let you know what 
happened.

Take your class notes in outline form, and fill in the details later. It can be very difficult to 
take word-for-word notes, so just write down key ideas. Your professor may use a diagram 
from the textbook. Leave a space in your notes and add the diagram later. After class, edit your 
notes, filling in any gaps or omissions and noting things that you need to study further. Make 
references to the textbook by page, equation number, or section number.

Ask questions in class, or see your professor during office hours. Remember that the only 
“dumb” question is the one that is not asked. Your college may have teaching assistants or peer 
tutors who are available to help you with any difficulties.

EXAMINATIONS
Taking an examination is stressful. But if you feel adequately prepared and are well rested, 
your stress will be lessened. Preparing for an exam is a continuous process; it begins the mo-
ment the previous exam is over. You should immediately go over the exam to understand any 
mistakes you made. If you worked a problem and made substantial errors, try this: Take a piece 
of paper and divide it down the middle with a line from top to bottom. In one column, write the 
proper solution to the problem. In the other column, write what you did and why, if you know, 
and why your solution was incorrect. If you are uncertain why you made your mistake or how 
to avoid making it again, talk with your professor. Physics constantly builds on fundamental 
ideas, and it is important to correct any misunderstandings immediately. Warning: Although 
cramming at the last minute may get you through the present exam, you will not adequately 
retain the concepts for use on the next exam.

	 HOW TO SUCCEED IN PHYSICS BY REALLY TRYING        v

A04_YOUN9552_15_SE_EXTENDED_FM.indd   5 06/12/18   6:44 AM



TO THE INSTRUCTOR

PREFACE
In the years since it was first published, University Physics has always embraced change, 
not just to include the latest developments in our understanding of the physical world, but 
also to address our understanding of how students learn physics and how they study.

In preparing for this new Fifteenth Edition, we listened to the thousands of students 
who have told us that they often struggle to see the connections between the worked ex-
amples in their textbook and problems on homework or exams. Every problem seems 
different because the objects, situations, numbers, and questions posed change with each 
problem. As a result, students experience frustration and a lack of confidence. By contrast, 
expert problem-solvers categorize problems by type, based on the underlying principles.

Several of the revisions we have made therefore address this particular challenge by, 
for example, helping students see the big picture of what each worked example is trying 
to illustrate and allowing them to practice sets of related problems to help them identify 
repeating patterns and strategies. These new features are explained in more detail below.

NEW TO THIS EDITION
•	 Worked example KEYCONCEPT statements appear at the end of every Example and 

Conceptual Example, providing a brief summary of the key idea used in the solution to 
consolidate what was most important and what can be broadly applied to other prob-
lems, to help students identify strategies that can be used in future problems.

•	 KEY EXAMPLE ARIATION PROBLEMS in the new Guided Practice section at the 
end of each chapter are based on selected worked examples. They build in difficulty 
by changing scenarios, swapping the knowns and unknowns, and adding complexity 
and>or steps of reasoning to provide the most helpful range of related problems that 
use the same basic approach to solve. These scaffolded problem sets help students see 
patterns and make connections between problems that can be solved using the same un-
derlying principles and strategies so that they are more able to tackle different problem 
types when exam time comes.

•	 Expanded Caution paragraphs focus on typical student misconceptions and problem 
areas. Over a dozen more have been added to this edition based on common errors 
made in MasteringTM Physics.

•	 Updated and expanded Application sidebars give students engaging and relevant 
real-world context.

•	 Based on data from Mastering Physics and feedback from instructors, changes to 
the homework problems include the following:
•	 Over 500 new problems, with scores of other problems revised to improve clarity.
•	 Expanded three-dot-difficulty and Challenge Problems significantly stretch 

students by requiring sophisticated reasoning that often involves multiple steps or 
concepts and>or mathematical skills. Challenge Problems are the most difficult 
problems in each chapter and often involve calculus, multiple steps that lead stu-
dents through a complex analysis, and>or the exploration of a topic or application 
not explicitly covered in the chapter.

•	 New estimation problems help students learn to analyze problem scenarios, assess 
data, and work with orders of magnitude. This problem type engages students to 
more thoroughly explore the situation by requiring them to not only estimate some 
of the data in the problem but also decide what data need to be estimated based on 
real-world experience, reasoning, assumptions, and>or modeling.

•	 Expanded cumulative problems promote more advanced problem-solving tech-
niques by requiring knowledge and skills covered in previous chapters to be inte-
grated with understanding and skills from the current chapter.

•	 Expanded alternative problem sets in Mastering Physics provide textbook-specific 
problems from previous editions to assign for additional student practice.

Standard, Extended,  
and Three-Volume Editions

With Mastering Physics:
•	 Standard Edition: Chapters 1–37

(ISBN 978-0-135-64663-2)
•	 Extended Edition: Chapters 1–44

(ISBN 978-0-135-15970-5)

Without Mastering Physics:
•	 Standard Edition: Chapters 1–37

(ISBN 978-0-135-21611-8)
•	 Extended Edition: Chapters 1–44

(ISBN 978-0-135-15955-2)
•	 Volume 1: Chapters 1–20

(ISBN 978-0-135-21672-9)
•	 Volume 2: Chapters 21–37

(ISBN 978-0-135-21612-5)
•	 Volume 3: Chapters 37–44

(ISBN 978-0-135-21673-6)
vi
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	 PREFACE        vii

KEY FEATURES OF UNIVERSITY PHYSICS
•	 A QR code at the beginning of the new Guided Practice section in each chapter allows 

students to use a mobile phone to access the Study Area of Mastering Physics, where 
they can watch interactive videos of a physics professor giving a relevant physics dem-
onstration (Video Tutor Demonstrations) or showing a narrated and animated worked 
Example (Video Tutor Solutions). All videos also play directly through links within the 
Pearson eText.

•	 End-of-chapter Bridging Problems provide a transition between the single-concept 
Examples and the more challenging end-of-chapter problems. Each Bridging Problem 
poses a difficult, multiconcept problem that typically incorporates physics from earlier 
chapters. The Solution Guide that follows each problem provides questions and hints 
that help students approach and solve challenging problems with confidence.

•	 Deep and extensive problem sets cover a wide range of difficulty (with blue dots to in-
dicate relative difficulty level) and exercise both physical understanding and problem-
solving expertise. Many problems are based on complex real-life situations.

•	 This textbook offers more Examples and Conceptual Examples than most other lead-
ing calculus-based textbooks, allowing students to explore problem-solving challenges 
that are not addressed in other textbooks.

•	 A research-based problem-solving approach (Identify, Set Up, Execute, Evaluate) 
is used in every Example as well as in the Problem-Solving Strategies, in the Bridging 
Problems, and throughout the Instructor’s Solutions Manual and the Study Guide. This 
consistent approach teaches students to tackle problems thoughtfully rather than cut-
ting straight to the math.

•	 Problem-Solving Strategies coach students in how to approach specific types of problems.
•	 The figures use a simplified graphical style to focus on the physics of a situation, and 

they incorporate blue explanatory annotations. Both techniques have been demon-
strated to have a strong positive effect on learning.

•	 Many figures that illustrate Example solutions take the form of black-and-white pencil 
sketches, which directly represent what a student should draw in solving such problems 
themselves.

•	 The popular Caution paragraphs focus on typical misconceptions and student 
problem areas.

•	 End-of-section Test Your Understanding questions let students check their grasp of 
the material and use a multiple-choice or ranking-task format to probe for common 
misconceptions. Answers are now provided immediately after the question in order to 
encourage students to try them.

•	 Visual Summaries at the end of each chapter present the key ideas in words, equations, 
and thumbnail pictures, helping students review more effectively.

Mastering™ is the teaching and learning platform that empowers you to reach every 
student. By combining trusted author content with digital tools developed to engage 
students and emulate the office-hour experience, Mastering personalizes learning and 
improves results for each student. Now providing a fully integrated experience, the eText 
is linked to every problem within Mastering for seamless integration among homework 
problems, practice problems, the textbook, worked examples, and more.
Reach every student with Mastering
•	 Teach your course your way: Your course is unique. Whether you’d like to build your 

own auto-graded assignments, foster student engagement during class, or give students 
anytime, anywhere access, Mastering gives you the flexibility to easily create your 
course to fit your needs.
•	 With Learning Catalytics, you’ll hear from every student when it matters most. 

You pose a variety of questions that help students recall ideas, apply concepts, and 
develop critical-thinking skills. Your students respond using their own smartphones, 
tablets, or laptops. You can monitor responses with real-time analytics and find out 
what your students do—and don’t—understand. Then you can adjust your teach-
ing accordingly and even facilitate peer-to-peer learning, helping students stay 
motivated and engaged.
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•	 Expanded alternative problem sets, with hundreds of vetted problems from pre-
vious editions of the book, provide additional problem-solving practice and offer 
instructors more options when creating assignments.

•	 Empower each learner: Each student learns at a different pace. Personalized learning, 
including adaptive tools and wrong-answer feedback, pinpoints the precise areas where 
each student needs practice and gives all students the support they need—when and 
where they need it—to be successful.
•	 Interactive Pre-lecture Videos provide an introduction to key topics with embed-

ded assessment to help students prepare before lecture and to help professors iden-
tify student misconceptions.
•	 NEW! Quantitative Pre-lecture Videos now complement the conceptual Inter-

active Pre-lecture Videos designed to expose students to concepts before class 
and help them learn how problems for a specific concept are worked.

•	 NEW! Direct Measurement Videos are short videos that show real situations of physi-
cal phenomena. Grids, rulers, and frame counters appear as overlays, helping students to 
make precise measurements of quantities such as position and time. Students then apply 
these quantities along with physics concepts to solve problems and answer questions 
about the motion of the objects in the video. The problems are assignable in Mastering 
Physics and can be used to replace or supplement traditional word problems; they can 
also serve as open-ended questions to help develop problem-solving skills.

•	 NEW! Dynamic Study Modules help students study effectively—and at their own 
pace. How? By keeping them motivated and engaged. The assignable modules rely 
on the latest research in cognitive science, using methods—such as adaptivity, gami-
fication, and intermittent rewards—to stimulate learning and improve retention. 
Each module poses a series of questions about a course topic. These question sets 
adapt to each student’s performance and offer personalized, targeted feedback to 
help students master key concepts.

•	 NEW! The Physics Primer relies on videos, hints, and feedback to refresh students’ 
math skills in the context of physics and prepares them for success in the course. 
These tutorials can be assigned before the course begins or throughout the course as 
just-in-time remediation. They ensure that students practice and maintain their math 
skills, while tying together mathematical operations and physics analysis.

•	 Deliver trusted content: We partner with highly respected authors to develop interactive 
content and course-specific resources that keep students on track and engaged.
•	 Video Tutor Demonstrations and Video Tutor Solutions tie directly to relevant 

content in the textbook and can be accessed through Mastering Physics, via the eText, 
or from QR codes in the textbook.
•	 Video Tutor Solutions (VTSs) for every worked example in the book walk stu-

dents through the problem-solving process, providing a virtual teaching assistant 
on a round-the-clock basis.

•	 Video Tutor Demonstrations (VTDs) feature “pause-and-predict” demonstra-
tions of key physics concepts and incorporate assessment to engage students in 
understanding key concepts. New VTDs build on the existing collection, adding 
new topics for a more robust set of demonstrations.

•	 NEW! Enhanced end-of-chapter questions provide expanded remediation built 
into each question when and where students need it. Remediation includes scaf-
folded support, links to hints, links to appropriate sections of the eText, links from 
the eText to Mastering Physics, Video Tutor Solutions, math remediation, and 
wrong-answer feedback for homework assignments. Half of all end-of-chapter prob-
lems now have wrong-answer feedback and links to the eText.

•	 NEW! Key Example Variation Problems, assignable in Mastering Physics, build 
in difficulty by changing scenarios, swapping the knowns and unknowns, and add-
ing complexity and>or steps of reasoning to provide the most helpful range of related 
problems that use the same basic approach to find their solutions.

•	 NEW! Bridging Problems are now assignable in Mastering Physics, thus pro-
viding students with additional practice in moving from single-concept worked 
examples to multi-concept homework problems.
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•	 Improve student results: Usage statistics show that when you teach with Mastering, 
student performance improves. That’s why instructors have chosen Mastering for over 
15 years, touching the lives of more than 20 million students.

INSTRUCTIONAL PACKAGE
University Physics with Modern Physics, Fifteenth Edition, provides an integrated teaching 
and learning package of support material for students and instructors.

NOTE: For convenience, instructor supplements can be downloaded from the Instructor 
Resources area of Mastering Physics.

Supplement Print Online

Instructor 
or Student 
Supplement Description

Mastering Physics 
with Pearson eText
(ISBN 0135180678)

✓ Instructor 
and Student 
Supplement

This product features all of the 
resources of Mastering Physics 
in addition to Pearson eText 
2.0. Available on smartphones 
and tablets, Pearson eText 
2.0 comprises the full text, 
including videos and other 
rich media.

Instructor’s Solutions 
Manual
(ISBN 0135275881)

✓ Instructor 
Supplement

This comprehensive solutions  
manual contains complete 
solutions to all end-of-chapter 
questions and problems.

Instructor’s Resource 
Materials

✓ Instructor 
Supplement

All art, photos, and tables 
from the book are avail-
able in JPEG format and as 
modifiable PowerPointsTM. 
In addition, instructors can 
access lecture outlines as 
well as “clicker” questions 
in PowerPoint format; edit-
able content for key features, 
including key equations and 
Problem-Solving Strategies; 
and the TestGen test bank.

Student’s Study 
Guide>Solutions 
Manual

Volume 1 (Chs 1–20)
(ISBN 0135216958)

Volume 2 (Chs 21–37)
(ISBN 013521694X)

Volume 3 (Chs 37–44)
(ISBN 013559202X)

✓ Student 
Supplement

This combination study 
guide and solutions manual 
reinforces the textbook’s 
research-based problem-
solving approach (Identify, 
Set Up, Evaluate, Execute). 
The solutions manual contains 
solutions to most of the odd-
numbered problems in the text, 
and the study guide provides 
a chapter-by-chapter review 
of key concepts and equations 
as well as additional example 
problems with solutions.
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1

P hysics is one of the most fundamental of the sciences. Scientists of all disciplines 
use the ideas of physics, including chemists who study the structure of molecules, 
paleontologists who try to reconstruct how dinosaurs walked, and climatologists 

who study how human activities affect the atmosphere and oceans. Physics is also the 
foundation of all engineering and technology. No engineer could design a flat-screen TV, 
a prosthetic leg, or even a better mousetrap without first understanding the basic laws  
of physics.

The study of physics is also an adventure. You’ll find it challenging, sometimes frus-
trating, occasionally painful, and often richly rewarding. If you’ve ever wondered why the 
sky is blue, how radio waves can travel through empty space, or how a satellite stays in 
orbit, you can find the answers by using fundamental physics. You’ll come to see phys-
ics as a towering achievement of the human intellect in its quest to understand our world  
and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll need 
throughout our study. We’ll discuss the nature of physical theory and the use of ideal-
ized models to represent physical systems. We’ll introduce the systems of units used to 
describe physical quantities and discuss ways to describe the accuracy of a number. We’ll 
look at examples of problems for which we can’t (or don’t want to) find a precise answer, 
but for which rough estimates can be useful and interesting. Finally, we’ll study several 
aspects of vectors and vector algebra. We’ll need vectors throughout our study of physics 
to help us describe and analyze physical quantities, such as velocity and force, that have 
direction as well as magnitude.

1.1  THE NATURE OF PHYSICS
Physics is an experimental science. Physicists observe the phenomena of nature and try to 
find patterns that relate these phenomena. These patterns are called physical theories or, 
when they are very well established and widely used, physical laws or principles.

LEARNING OUTCOMES

In this chapter, you'll learn...
	1.1	 What a physical theory is.
	1.2	 The four steps you can use to solve any 

physics problem.
	1.3	 Three fundamental quantities of physics 

and the units physicists use to measure 
them.

	1.4	 How to work with units in your 
calculations.

	1.5	 How to keep track of significant figures 
in your calculations.

	1.6	 How to make rough, order-of-magnitude 
estimates.

	1.7	 The difference between scalars and 
vectors, and how to add and subtract 
vectors graphically.

	1.8	 What the components of a vector are 
and how to use them in calculations.

	1.9	 What unit vectors are and how to use 
them with components to describe 
vectors.

	1.10	 Two ways to multiply vectors: the scalar 
(dot) product and the vector (cross) 
product.

? Tornadoes are spawned by severe 
thunderstorms, so being able to predict 

the path of thunderstorms is essential.  
If a thunderstorm is moving at 15 km>h in  
a direction 37° north of east, how far north 
does the thunderstorm move in 2.0 h?  
(i) 30 km; (ii) 24 km; (iii) 18 km; (iv) 12 km; 
(v) 9 km.

 1  �Units, Physical  
Quantities, and Vectors
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2        CHAPTER 1  Units, Physical Quantities, and Vectors

   CAUTION     The meaning of “theory”  A theory is not just a random thought or an unproven  
concept. Rather, a theory is an explanation of natural phenomena based on observation and ac-
cepted fundamental principles. An example is the well-established theory of biological evolution, 
which is the result of extensive research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to ask appropriate questions, design exper-
iments to try to answer the questions, and draw appropriate conclusions from the results. 
Figure 1.1 shows two important facilities used for physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy objects from 
the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether their rates of fall were 
different. From examining the results of his experiments (which were actually much more 
sophisticated than in the legend), he deduced the theory that the acceleration of a freely 
falling object is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect path, 
with blind alleys, wrong guesses, and the discarding of unsuccessful theories in favor of 
more promising ones. Physics is not simply a collection of facts and principles; it is also 
the process by which we arrive at general principles that describe how the physical uni-
verse behaves.

No theory is ever regarded as the ultimate truth. It’s always possible that new observa-
tions will require that a theory be revised or discarded. Note that we can disprove a theory 
by finding behavior that is inconsistent with it, but we can never prove that a theory is 
always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly 
do not fall at the same rate. This does not mean that Galileo was wrong; it means that his 
theory was incomplete. If we drop the feather and the cannonball in a vacuum to elimi-
nate the effects of the air, then they do fall at the same rate. Galileo’s theory has a range 
of validity: It applies only to objects for which the force exerted by the air (due to air 
resistance and buoyancy) is much less than the weight. Objects like feathers or parachutes 
are clearly outside this range.

1.2  SOLVING PHYSICS PROBLEMS
At some point in their studies, almost all physics students find themselves thinking, “I 
understand the concepts, but I just can’t solve the problems.” But in physics, truly under-
standing a concept means being able to apply it to a variety of problems. Learning how to 
solve problems is absolutely essential; you don’t know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book you’ll find 
Problem-Solving Strategies that offer techniques for setting up and solving problems 
efficiently and accurately. Following each Problem-Solving Strategy are one or more 
worked Examples that show these techniques in action. (The Problem-Solving Strategies 
will also steer you away from some incorrect techniques that you may be tempted to use.) 
You’ll also find additional examples that aren’t associated with a particular Problem-
Solving Strategy. In addition, at the end of each chapter you’ll find a Bridging Problem 
that uses more than one of the key ideas from the chapter. Study these strategies and 
problems carefully, and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics problems, which 
is why this book offers dozens of Problem-Solving Strategies. No matter what kind of 
problem you’re dealing with, however, there are certain key steps that you’ll always fol-
low. (These same steps are equally useful for problems in math, engineering, chemistry, 
and many other fields.) In this book we’ve organized these steps into four stages of solving 
a problem.

All of the Problem-Solving Strategies and Examples in this book will follow these four 
steps. (In some cases we’ll combine the first two or three steps.) We encourage you to follow 
these same steps when you solve problems yourself. You may find it useful to remember the 
acronym I SEE—short for Identify, Set up, Execute, and Evaluate.

(b) By doing experiments in apparent
weightlessness on board the International
Space Station, physicists have been able to
make sensitive measurements that would be
impossible in Earth’s surface gravity.

(a) According to legend, Galileo investigated
falling objects by dropping them from the
Leaning Tower of Pisa, Italy, ...

... and he studied pendulum motion
by observing the swinging chandelier
in the adjacent cathedral.

Figure 1.1  Two research laboratories.
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	 1.3  Standards and Units        3

Idealized Models
In everyday conversation we use the word “model” to mean either a small-scale replica, 
such as a model railroad, or a person who displays articles of clothing (or the absence 
thereof). In physics a model is a simplified version of a physical system that would be too 
complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball (Fig. 1.2a). 
How complicated is this problem? The ball is not a perfect sphere (it has raised seams), 
and it spins as it moves through the air. Air resistance and wind influence its motion, the 
ball’s weight varies a little as its altitude changes, and so on. If we try to include all these 
effects, the analysis gets hopelessly complicated. Instead, we invent a simplified version of 
the problem. We ignore the size, shape, and rotation of the ball by representing it as a point 
object, or particle. We ignore air resistance by making the ball move in a vacuum, and 
we make the weight constant. Now we have a problem that is simple enough to deal with  
(Fig. 1.2b). We’ll analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but we must 
be careful not to neglect too much. If we ignore the effects of gravity completely, then our 
model predicts that when we throw the ball up, it will go in a straight line and disappear 
into space. A useful model simplifies a problem enough to make it manageable, yet keeps 
its essential features.

The validity of the predictions we make using a model is limited by the validity of 
the model. For example, Galileo’s prediction about falling objects (see Section 1.1) corre-
sponds to an idealized model that does not include the effects of air resistance. This model 
works fairly well for a dropped cannonball, but not so well for a feather.

Idealized models play a crucial role throughout this book. Watch for them in discus-
sions of physical theories and their applications to specific problems.

1.3  STANDARDS AND UNITS
As we learned in Section 1.1, physics is an experimental science. Experiments require 
measurements, and we generally use numbers to describe the results of measurements. 
Any number that is used to describe a physical phenomenon quantitatively is called 

IDENTIFY the relevant concepts:

•	 Use the physical conditions stated in the problem to help you 
decide which physics concepts are relevant.

•	 Identify the target variables of the problem—that is, the 
quantities whose values you’re trying to find, such as the speed at 
which a projectile hits the ground, the intensity of a sound made 
by a siren, or the size of an image made by a lens.

•	 Identify the known quantities, as stated or implied in the problem. 
This step is essential whether the problem asks for an algebraic 
expression or a numerical answer.

SET UP the problem:

•	 Given the concepts, known quantities, and target variables that 
you found in the IDENTIFY step, choose the equations that you’ll 
use to solve the problem and decide how you’ll use them. Study 
the worked examples in this book for tips on how to select the 
proper equations. If this seems challenging, don’t worry—you’ll 
get better with practice!

•	 Make sure that the variables you have identified correlate exactly 
with those in the equations.

•	 If appropriate, draw a sketch of the situation described in the 
problem. (Graph paper and a ruler will help you make clear, 
useful sketches.)

EXECUTE the solution:

•	 Here’s where you’ll “do the math” with the equations that you 
selected in the SET UP step to solve for the target variables that 
you found in the IDENTIFY step. Study the worked examples to 
see what’s involved in this step.

EVALUATE your answer:

•	 Check your answer from the SOLVE step to see if it’s reasonable. 
(If you’re calculating how high a thrown baseball goes, an answer 
of 1.0 mm is unreasonably small and an answer of 100 km is 
unreasonably large.) If your answer includes an algebraic expres-
sion, confirm that it correctly represents what would happen if the 
variables in it had very large or very small values.

•	 For future reference, make note of any answer that represents a 
quantity of particular significance. Ask yourself how you might 
answer a more general or more difficult version of the problem 
you have just solved.

PROBLEM-SOLVING STRATEGY 1.1  Solving Physics Problems

Direction of
motion

Direction of
motion

Treat the baseball as a point object (particle).

No air resistance.

A baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

Figure 1.2  To simplify the analysis of  
(a) a baseball in flight, we use (b) an 
idealized model.
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4        CHAPTER 1  Units, Physical Quantities, and Vectors

a physical quantity. For example, two physical quantities that describe you are your 
weight and your height. Some physical quantities are so fundamental that we can define 
them only by describing how to measure them. Such a definition is called an operational 
definition. Two examples are measuring a distance by using a ruler and measuring a 
time interval by using a stopwatch. In other cases we define a physical quantity by de-
scribing how to calculate it from other quantities that we can measure. Thus we might 
define the average speed of a moving object as the distance traveled (measured with a 
ruler) divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference standard. 
When we say that a basketball hoop is 3.05 meters above the ground, we mean that this 
distance is 3.05 times as long as a meter stick, which we define to be 1 meter long. Such 
a standard defines a unit of the quantity. The meter is a unit of distance, and the second 
is a unit of time. When we use a number to describe a physical quantity, we must always 
specify the unit that we are using; to describe a distance as simply “3.05” wouldn’t 
mean anything.

To make accurate, reliable measurements, we need units of measurement that do not 
change and that can be duplicated by observers in various locations. The system of units 
used by scientists and engineers around the world is commonly called “the metric sys-
tem,” but since 1960 it has been known officially as the International System, or SI (the 
abbreviation for its French name, Système International). Appendix A gives a list of all SI 
units as well as definitions of the most fundamental units.

Time
From 1889 until 1967, the unit of time was defined as a certain fraction of the mean solar 
day, the average time between successive arrivals of the sun at its highest point in the sky. 
The present standard, adopted in 1967, is much more precise. It is based on an atomic 
clock, which uses the energy difference between the two lowest energy states of the  
cesium atom (133Cs). When bombarded by microwaves of precisely the proper frequency, 
cesium atoms undergo a transition from one of these states to the other. One second  
(abbreviated s) is defined as the time required for 9,192,631,770 cycles of this microwave 
radiation (Fig. 1.3a).

Length
In 1960 an atomic standard for the meter was also established, using the wavelength of the 
orange-red light emitted by excited atoms of krypton 186Kr2. From this length standard, 
the speed of light in vacuum was measured to be 299,792,458 m>s. In November 1983, the 
length standard was changed again so that the speed of light in vacuum was defined to be 
precisely 299,792,458 m>s. Hence the new definition of the meter (abbreviated m) is the 
distance that light travels in vacuum in 1>299,792,458 second (Fig. 1.3b). This modern 
definition provides a much more precise standard of length than the one based on a wave-
length of light.

Mass
Until recently the unit of mass, the kilogram (abbreviated kg), was defined to be the 
mass of a metal cylinder kept at the International Bureau of Weights and Measures in 
France (Fig. 1.4). This was a very inconvenient standard to use. Since 2018 the value of 
the kilogram has been based on a fundamental constant of nature called Planck’s constant 
(symbol h), whose defined value h = 6.62607015 * 10-34 kg # m2>s is related to those of 
the kilogram, meter, and second. Given the values of the meter and the second, the masses 
of objects can be experimentally determined in terms of h. (We’ll explain the meaning of 
h in Chapter 28.) The gram (which is not a fundamental unit) is 0.001 kilogram.

Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

Figure 1.3  The measurements used to 
determine (a) the duration of a second 
and (b) the length of a meter. These 
measurements are useful for setting 
standards because they give the same 
results no matter where they are made.
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	 1.3  Standards and Units        5

Other derived units can be formed from the fundamental units. For example, the units 
of speed are meters per second, or m>s; these are the units of length (m) divided by the 
units of time (s).

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and smaller 
units for the same physical quantities. In the metric system these other units are related to 
the fundamental units (or, in the case of mass, to the gram) by multiples of 10 or 1

10. Thus 
one kilometer 11 km2 is 1000 meters, and one centimeter 11 cm2 is 1

100 meter. We usually 
express multiples of 10 or 1

10 in exponential notation: 1000 = 103, 1
1000 = 10-3, and so on. 

With this notation, 1 km = 103 m and 1 cm = 10-2 m.
The names of the additional units are derived by adding a prefix to the name of the 

fundamental unit. For example, the prefix “kilo-,” abbreviated k, always means a unit 
larger by a factor of 1000; thus

 1 kilometer = 1 km  = 103 meters = 103 m

 1 kilogram = 1 kg  = 103 grams  = 103 g

 1 kilowatt  = 1 kW = 103 watts  = 103 W

A table in Appendix A lists the standard SI units, with their meanings and abbreviations.
Table 1.1 gives some examples of the use of multiples of 10 and their prefixes with the 

units of length, mass, and time. Figure 1.5 (next page) shows how these prefixes are used 
to describe both large and small distances.

The British System
Finally, we mention the British system of units. These units are used in only the United 
States and a few other countries, and in most of these they are being replaced by SI units. 
British units are now officially defined in terms of SI units, as follows:

Length:    1 inch = 2.54 cm (exactly)

Force:    1 pound = 4.448221615260 newtons (exactly)

The newton, abbreviated N, is the SI unit of force. The British unit of time is the second, 
defined the same way as in SI. In physics, British units are used in mechanics and thermo-
dynamics only; there is no British system of electrical units.

Figure 1.4  Until 2018 a metal cylinder 
was used to define the value of the 
kilogram. (The one shown here, a copy 
of the one in France, was maintained by 
the U. S. National Institute of Standards 
and Technology.) Today the kilogram is 
defined in terms of one of the fundamental 
constants of nature.

TABLE 1.1  Some Units of Length, Mass, and Time

Length Mass Time

1 nanometer  = 1 nm  = 10-9 m 
(a few times the size of the largest atom)

1 micrometer = 1 mm = 10-6 m 
(size of some bacteria and other cells)

1 millimeter  = 1 mm = 10-3 m 
(diameter of the point of a ballpoint pen)

1 centimeter  = 1 cm  = 10-2 m 
(diameter of your little finger)

1 kilometer  = 1 km  = 103 m 
(distance in a 10 minute walk)

1 microgram  = 1 mg  = 10-6 g = 10-9 kg 
(mass of a very small dust particle)

1 milligram  = 1 mg  = 10-3 g = 10-6 kg 
(mass of a grain of salt)

1 gram  = 1 g  = 10-3 kg 
(mass of a paper clip)

1 nanosecond  = 1 ns  = 10-9 s 
(time for light to travel 0.3 m)

1 microsecond = 1 ms  = 10-6 s 
(time for space station to move 8 mm)

1 millisecond  = 1 ms = 10-3 s 
(time for a car moving at freeway speed  
to travel 3 cm)
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In this book we use SI units for all examples and problems, but we occasionally give 
approximate equivalents in British units. As you do problems using SI units, you may also 
wish to convert to the approximate British equivalents if they are more familiar to you 
(Fig. 1.6). But you should try to think in SI units as much as you can.

1.4  USING AND CONVERTING UNITS
We use equations to express relationships among physical quantities, represented  
by algebraic symbols. Each algebraic symbol always denotes both a number and a 
unit. For example, d might represent a distance of 10 m, t a time of 5 s, and v a speed  
of 2 m>s.

An equation must always be dimensionally consistent. You can’t add apples and au-
tomobiles; two terms may be added or equated only if they have the same units. For ex-
ample, if an object moving with constant speed v travels a distance d in a time t, these 
quantities are related by the equation

d = vt

If d is measured in meters, then the product vt must also be expressed in meters. Using the 
above numbers as an example, we may write

10 m = a2 
m
s
b (5 s)

Because the unit s in the denominator of m>s cancels, the product has units of meters, as 
it must. In calculations, units are treated just like algebraic symbols with respect to multi-
plication and division.

   CAUTION     Always use units in calculations  Make it a habit to always write numbers with 
the correct units and carry the units through the calculation as in the example above. This pro-
vides a very useful check. If at some stage in a calculation you find that an equation or an 
expression has inconsistent units, you know you have made an error. In this book we’ll always 
carry units through all calculations, and we strongly urge you to follow this practice when you 
solve problems. ❙

Figure 1.6  Many everyday items make 
use of both SI and British units. An 
example is this speedometer from a  
U.S.-built car, which shows the speed in 
both kilometers per hour (inner scale) and 
miles per hour (outer scale).

(g) 10-14 m
Radius of an
atomic nucleus

(f) 10-10 m
Radius of an
atom

Note: (f) is a scanning tunneling
microscope image of atoms on a
crystal surface; (g) is an artist’s
impression.

(e) 10-5 m
Diameter of a
red blood cell

(d) 1 m
Human
dimensions

(c) 107 m
Diameter of
the earth

(b) 1011 m
Distance to
the sun

(a) 1026 m
Limit of the
observable
universe

Figure 1.5  Some typical lengths in the universe.
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IDENTIFY  the relevant concepts: In most cases, it’s best to use the 
fundamental SI units (lengths in meters, masses in kilograms, and 
times in seconds) in every problem. If you need the answer to be in a 
different set of units (such as kilometers, grams, or hours), wait until 
the end of the problem to make the conversion.

SET UP  the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives us 
an easy way to convert a quantity from one set of units to another: 
Express the same physical quantity in two different units and form 
an equality.

For example, when we say that 1 min = 60 s, we don’t mean 
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this 
reason, the ratio (1 min)>(60 s) equals 1, as does its reciprocal, 
(60 s)>(1 min). We may multiply a quantity by either of these factors 

(which we call unit multipliers) without changing that quantity’s 
physical meaning. For example, to find the number of seconds in 
3 min, we write

3 min = (3 min)a 60 s
1 min

b = 180 s

EVALUATE  your answer: If you do your unit conversions correctly, 
unwanted units will cancel, as in the example above. If, instead, you 
had multiplied 3 min by (1 min)>(60 s), your result would have been 
the nonsensical 1

20 min2>s. To be sure you convert units properly, in-
clude the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For exam-
ple, the result 3 min = 180 s is reasonable because the second is a 
smaller unit than the minute, so there are more seconds than minutes 
in the same time interval.

PROBLEM-SOLVING STRATEGY 1.2  Unit Conversions

EXAMPLE 1.1  Converting speed units

The world land speed record of 763.0 mi>h was set on October 15, 
1997, by Andy Green in the jet-engine car Thrust SSC. Express this 
speed in meters per second.

IDENTIFY, SET UP, and EXECUTE  We need to convert the units of a 
speed from mi>h to m>s. We must therefore find unit multipliers that re-
late (i) miles to meters and (ii) hours to seconds. In Appendix E we find 
the equalities 1 mi = 1.609 km, 1 km =  1000 m, and 1 h = 3600 s. We 
set up the conversion as follows, which ensures that all the desired can-
cellations by division take place:

 763.0 mi>h = a763.0 
mi
h
b a1.609 km

1 mi
b a1000 m

1 km
b a 1 h

3600 s
b

 = 341.0 m>s

EVALUATE  This example shows a useful rule of thumb: A speed 
expressed in m>s is a bit less than half the value expressed in mi>h, and 
a bit less than one-third the value expressed in km>h. For example, a 
normal freeway speed is about 30 m>s = 67 mi>h = 108 km>h, and a 
typical walking speed is about 1.4 m>s = 3.1 mi>h = 5.0 km>h.

KEYCONCEPT  To convert units, multiply by an appropriate unit 
multiplier.

EXAMPLE 1.2  Converting volume units

One of the world’s largest cut diamonds is the First Star of Africa 
(mounted in the British Royal Sceptre and kept in the Tower of 
London). Its volume is 1.84 cubic inches. What is its volume in cubic 
centimeters? In cubic meters?

IDENTIFY, SET UP, and EXECUTE  Here we are to convert the units of 
a volume from cubic inches 1in.32 to both cubic centimeters 1cm32 and 
cubic meters 1m32. Appendix E gives us the equality 1 in. = 2.540 cm, 
from which we obtain 1 in.3 = (2.54 cm)3. We then have

 1.84 in.3 = 11.84 in.32a2.54 cm
1 in.

b
3

 = 11.84212.5423 
in.3 cm3

in.3
= 30.2 cm3

Appendix E also gives us 1 m = 100 cm, so

 30.2 cm3 = 130.2 cm32a 1 m
100 cm

b
3

 = 130.22a 1
100

b
3

 
cm3 m3

cm3 = 30.2 * 10-6 m3

 = 3.02 * 10-5 m3

EVALUATE  Following the pattern of these conversions, can you show 
that 1 in .3 ≈ 16 cm3 and that 1 m3 ≈ 60,000 in.3?

KEYCONCEPT  If the units of a quantity are a product of simpler 
units, such as m3 = m * m * m, use a product of unit multipliers to 
convert these units.
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1.5  UNCERTAINTY AND SIGNIFICANT FIGURES
Measurements always have uncertainties. If you measure the thickness of the cover of a 
hardbound version of this book using an ordinary ruler, your measurement is reliable to 
only the nearest millimeter, and your result will be 3 mm. It would be wrong to state this 
result as 3.00 mm; given the limitations of the measuring device, you can’t tell whether 
the actual thickness is 3.00 mm, 2.85 mm, or 3.11 mm. But if you use a micrometer cali-
per, a device that measures distances reliably to the nearest 0.01 mm, the result will be 
2.91 mm. The distinction between the measurements with a ruler and with a caliper is in 
their uncertainty; the measurement with a caliper has a smaller uncertainty. The uncer-
tainty is also called the error because it indicates the maximum difference there is likely 
to be between the measured value and the true value. The uncertainty or error of a mea-
sured value depends on the measurement technique used.

We often indicate the accuracy of a measured value—that is, how close it is likely 
to be to the true value—by writing the number, the symbol { , and a second number 
indicating the uncertainty of the measurement. If the diameter of a steel rod is given as 
56.47 { 0.02 mm, this means that the true value is likely to be within the range from 
56.45 mm to 56.49 mm. In a commonly used shorthand notation, the number 1.64541212 
means 1.6454 { 0.0021. The numbers in parentheses show the uncertainty in the final 
digits of the main number.

We can also express accuracy in terms of the maximum likely fractional error or 
percent error (also called fractional uncertainty and percent uncertainty). A resistor la-
beled ;47 ohms { 10%< probably has a true resistance that differs from 47 ohms by no 
more than 10% of 47 ohms—that is, by about 5 ohms. The resistance is probably between 
42 and 52 ohms. For the diameter of the steel rod given above, the fractional error is 
10.02 mm2>156.47 mm2, or about 0.0004; the percent error is 10.000421100%2, or about 
0.04%. Even small percent errors can be very significant (Fig. 1.7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncer-
tainty is indicated by the number of meaningful digits, or significant figures, in the mea-
sured value. We gave the thickness of the cover of the book as 2.91 mm, which has three 
significant figures. By this we mean that the first two digits are known to be correct, while 
the third digit is uncertain. The last digit is in the hundredths place, so the uncertainty is 
about 0.01 mm. Two values with the same number of significant figures may have different 
uncertainties; a distance given as 137 km also has three significant figures, but the uncer-
tainty is about 1 km. A distance given as 0.25 km has two significant figures (the zero to the 
left of the decimal point doesn’t count); if given as 0.250 km, it has three significant figures.

When you use numbers that have uncertainties to compute other numbers, the com-
puted numbers are also uncertain. When numbers are multiplied or divided, the result 
can have no more significant figures than the factor with the fewest significant figures 
has. For example, 3.1416 * 2.34 * 0.58 = 4.3. When we add and subtract numbers, it’s 
the location of the decimal point that matters, not the number of significant figures. For 
example, 123.62 + 8.9 = 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 
has an uncertainty of about 0.1. So their sum has an uncertainty of about 0.1 and should 
be written as 132.5, not 132.52. Table 1.2 summarizes these rules for significant figures.

To apply these ideas, suppose you want to verify the value of p, the ratio of the circum-
ference of a circle to its diameter. The true value of this ratio to ten digits is 3.141592654. 
To test this, you draw a large circle and measure its circumference and diameter to the 
nearest millimeter, obtaining the values 424 mm and 135 mm (Fig. 1.8). You enter these 
into your calculator and obtain the quotient 1424 mm2>1135 mm2 = 3.140740741. This 
may seem to disagree with the true value of p, but keep in mind that each of your mea-
surements has three significant figures, so your measured value of p can have only three 
significant figures. It should be stated simply as 3.14. Within the limit of three significant 
figures, your value does agree with the true value.

In the examples and problems in this book we usually give numerical values with three 
significant figures, so your answers should usually have no more than three significant fig-
ures. (Many numbers in the real world have even less accuracy. The speedometer in a car, 
for example, usually gives only two significant figures.) Even if you do the arithmetic with a 

Figure 1.7  This spectacular mishap was 
the result of a very small percent error—
traveling a few meters too far at the end 
of a journey of hundreds of thousands of 
meters.

TABLE 1.2  Using Significant Figures

Multiplication or division:
Result can have no more significant figures
than the factor with the fewest significant figures:

Addition or subtraction:
Number of significant figures is determined by
the term with the largest uncertainty (i.e., fewest
digits to the right of the decimal point):

0.745 *  2.2

1.32578 *  107 *  4.11 *  10 - 3 =  5.45 *  104

27.153 +  138.2 -  11.74 =  153.6

3.885
 =  0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

Figure 1.8  Determining the value of p from 
the circumference and diameter of a circle.
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calculator that displays ten digits, a ten-digit answer would misrepresent the accuracy of the 
results. Always round your final answer to keep only the correct number of significant figures 
or, in doubtful cases, one more at most. In Example 1.1 it would have been wrong to state 
the answer as 341.01861 m>s. Note that when you reduce such an answer to the appropriate 
number of significant figures, you must round, not truncate. Your calculator will tell you that 
the ratio of 525 m to 311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

Here’s a special note about calculations that involve multiple steps: As you work, it’s helpful 
to keep extra significant figures in your calculations. Once you have your final answer, round it 
to the correct number of significant figures. This will give you the most accurate results.

When we work with very large or very small numbers, we can show significant figures 
much more easily by using scientific notation, sometimes called powers-of-10 notation. 
The distance from the earth to the moon is about 384,000,000 m, but writing the number in 
this form doesn’t indicate the number of significant figures. Instead, we move the decimal 
point eight places to the left (corresponding to dividing by 108) and multiply by 108; that is,

384,000,000 m = 3.84 * 108 m

In this form, it is clear that we have three significant figures. The number 4.00 * 10-7 
also has three significant figures, even though two of them are zeros. Note that in scien-
tific notation the usual practice is to express the quantity as a number between 1 and 10 
multiplied by the appropriate power of 10.

When an integer or a fraction occurs in an algebraic equation, we treat that number 
as having no uncertainty at all. For example, in the equation vx

 2 = v0x
 2  + 2ax 1x - x02, 

which is Eq. (2.13) in Chapter 2, the coefficient 2 is exactly 2. We can consider this coeffi-
cient as having an infinite number of significant figures (2.000000 c). The same is true 
of the exponent 2 in vx

 2 and v0x
 2.

Finally, let’s note that precision is not the same as accuracy. A cheap digital watch that 
gives the time as 10:35:17 a.m. is very precise (the time is given to the second), but if the watch 
runs several minutes slow, then this value isn’t very accurate. On the other hand, a grandfather 
clock might be very accurate (that is, display the correct time), but if the clock has no second 
hand, it isn’t very precise. A high-quality measurement is both precise and accurate.

EXAMPLE 1.3  Significant figures in multiplication

The rest energy E of an object with rest mass m is given by Albert 
Einstein’s famous equation E = mc2, where c is the speed of light 
in vacuum. Find E for an electron for which (to three significant 
figures) m = 9.11 * 10-31 kg. The SI unit for E is the joule (J); 
1 J = 1 kg # m2>s2.

IDENTIFY and SET UP  Our target variable is the energy E. We are given 
the value of the mass m; from Section 1.3 (or Appendix F) the speed of 
light is c = 2.99792458 * 108 m>s.

EXECUTE  Substituting the values of m and c into Einstein’s equation, 
we find

 E = 19.11 * 10-31 kg212.99792458 * 108 m>s22
 = 19.11212.9979245822110-312110822 kg # m2>s2

 = 181.8765967821103-31+12*8242 kg # m2>s2

 = 8.187659678 * 10-14 kg # m2>s2

Since the value of m was given to only three significant figures, we 
must round this to

E = 8.19 * 10-14 kg # m2>s2 = 8.19 * 10-14 J

EVALUATE  While the rest energy contained in an electron may seem 
ridiculously small, on the atomic scale it is tremendous. Compare our 
answer to 10-19 J, the energy gained or lost by a single atom during 
a typical chemical reaction. The rest energy of an electron is about 
1,000,000 times larger! (We’ll discuss the significance of rest energy in 
Chapter 37.)

KEYCONCEPT  When you are multiplying (or dividing) quantities, 
the result can have no more significant figures than the quantity with the 
fewest significant figures.

TEST YOUR UNDERSTANDING OF SECTION 1.5  The density of a material is equal to its 
mass divided by its volume. What is the density 1in kg>m32 of a rock of mass 1.80 kg and volume 
6.0 * 10-4 m3? (i) 3 * 103 kg>m3; (ii) 3.0 *  103 kg >m3; (iii) 3.00 * 103 kg>m3;  
(iv) 3.000 * 103 kg>m3; (v) any of these—all of these answers are mathematically equivalent.

ANSWER

❙ (ii) Density=11.80 kg2>16.0*10-4 m32=3.0*103 kg>m3. When we multiply or divide, the 
number with the fewest significant figures controls the number of significant figures in the result.
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1.6  ESTIMATES AND ORDERS OF MAGNITUDE
We have stressed the importance of knowing the accuracy of numbers that represent phys-
ical quantities. But even a very crude estimate of a quantity often gives us useful informa-
tion. Sometimes we know how to calculate a certain quantity, but we have to guess at the 
data we need for the calculation. Or the calculation might be too complicated to carry out 
exactly, so we make rough approximations. In either case our result is also a guess, but 
such a guess can be useful even if it is uncertain by a factor of two, ten, or more. Such cal-
culations are called order-of-magnitude estimates. The great Italian-American nuclear 
physicist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 1.15 through 1.20 at the end of this chapter are of the estimating, or order-of-
magnitude, variety. Most require guesswork for the needed input data. Don’t try to look up 
a lot of data; make the best guesses you can. Even when they are off by a factor of ten, the 
results can be useful and interesting.

EXAMPLE 1.4  An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes with a 
billion dollars’ worth of gold in his suitcase. Could anyone carry that 
much gold? Would it fit in a suitcase?

IDENTIFY, SET UP, and EXECUTE  Gold sells for about $1400 an 
ounce, or about $100 for 1

14 ounce. (The price per ounce has varied 
between $200 and $1900 over the past twenty years or so.) An ounce 
is about 30 grams, so $100 worth of gold has a mass of about 1

14 of 
30 grams, or roughly 2 grams. A billion 11092 dollars’ worth of gold 
has a mass 107 times greater, about 2 * 107 120 million2 grams or 
2 * 104 120,0002 kilograms. A thousand kilograms has a weight in 
British units of about a ton, so the suitcase weighs roughly 20 tons! 
No human could lift it.

Roughly what is the volume of this gold? The density of water is 
103 kg>m3; if gold, which is much denser than water, has a density 10 
times greater, then 104 kg of gold fits into a volume of 1 m3. So 109 dollars’  
worth of gold has a volume of 2 m3, many times the volume of a 
suitcase.

EVALUATE  Clearly your novel needs rewriting. Try the calculation 
again with a suitcase full of five-carat (1-gram) diamonds, each worth 
$500,000. Would this work?

KEYCONCEPT  To decide whether the numerical value of a quantity 
is reasonable, assess the quantity in terms of other quantities that you 
can estimate, even if only roughly.

TEST YOUR UNDERSTANDING OF SECTION 1.6  Can you estimate the total number of teeth 
in the mouths of all the students on your campus? (Hint: How many teeth are in your mouth?  
Count them!)

ANSWER

APPLICATION  Scalar 
Temperature, Vector Wind The 
comfort level on a wintry day depends 
on the temperature, a scalar quantity 
that can be positive or negative (say, 
+5°C or -20°C) but has no direction. 
It also depends on the wind velocity, a 
vector quantity with both magnitude and 
direction (for example, 15 km>h from 
the west).

1.7  VECTORS AND VECTOR ADDITION
Some physical quantities, such as time, temperature, mass, and density, can be described 
completely by a single number with a unit. But many other important quantities in phys-
ics have a direction associated with them and cannot be described by a single number. A 
simple example is the motion of an airplane: We must say not only how fast the plane is 
moving but also in what direction. The speed of the airplane combined with its direction 
of motion constitute a quantity called velocity. Another example is force, which in physics 
means a push or pull exerted on an object. Giving a complete description of a force means 
describing both how hard the force pushes or pulls on the object and the direction of the 
push or pull.

When a physical quantity is described by a single number, we call it a scalar quantity. 
In contrast, a vector quantity has both a magnitude (the “how much” or “how big” part) 
and a direction in space. Calculations that combine scalar quantities use the operations of 
ordinary arithmetic. For example, 6 kg + 3 kg = 9 kg, or 4 * 2 s = 8 s. However, com-
bining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the simplest 
vector quantity, displacement. Displacement is a change in the position of an object. 

❙ The answer depends on how many students are enrolled at your campus.
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